

Accepted: PPCF (https://iopscience.iop.org/article/10.1088/1361-6587/ac7970)

Nonlinear growth of magnetic islands by passing fast ions in NSTX

J. Yang, E. Fredrickson, M. Podestà, F. Poli *Princeton Plasma Physics Laboratory*

PPPL EP Group meeting July 6th, 2022

Outline

- Introduction
- Theoretical model
- Experimental setup
- Comparison of simulation and experiment
- Discussion and conclusion

Do fast ions affect magnetic island growth in NSTX?

- Fusion products in reactor relevant plasma may affect NTM stability
- Study of fast ion effect on NTM requires comprehensive set of measurements
 - TRANSP can provide time-dependent thermal and fast ion profiles self-consistently
- We show that passing fast ions can open gate for magnetic island growth in NSTX
- We assume single fluid model and fit modified Rutherford equation coefficients
 - Kinetic neoclassical polarization current theory [1] is developed from single fluid model
 - Modified Rutherford equation coefficients represent measurement uncertainties

[1] Cai, Nucl. Fusion **56** 126016 (2016)

Modified Rutherford equation governs island growth physics

- Tearing mode stability index [1]: Free energy within current density profile
- Neoclassical drive term [1]: Drive caused by loss of bootstrap current
 - Correction considering electron cross field transport [2]
- Polarization current stability term [3]: Subtlety involving polarization current
 - Toroidal current with zero surface average that *may* stabilize and create the "gate"
 - Conceptually explains island saturation but difficult to validate experimentally
- Curvature stabilization term [4]

- [1] Fredrickson *et al.*, Phys. Plasmas **7** 4112 (2000)
- [2] Fitzpatrick, Phys. Plasmas **2** 825 (1995)
- [3] Wilson et al., Phys. Plasmas 3 248 (1996)
- [4] Gorelenkov et al., Phys. Plasmas 3 3379 (1996)

$$\frac{1}{k_r} \frac{\tau_R}{r^2} \frac{dw}{dt} = \Delta'_{m,n}(w) + k_b \left[\frac{16J_{BS}}{s\langle J \rangle} \frac{w}{w^2 + w_d^2} \right] - k_p \left[\varepsilon^{3/2} \frac{\rho_{\theta i}^2}{w^2} - \frac{L_{n_i}}{L_{n_h}} \frac{n_h}{n_i} \right] \frac{\beta_{\theta}}{w} \left(\frac{L_q}{L_p} \right)^2 - k_c \frac{\beta_{\theta} \varepsilon^2}{rw} \frac{L_q^2}{|L_p|} \frac{q^2 - 1}{q^2}$$

Neoclassical polarization current is non-negligible for fast ions

- Parallel current may form to replenish lost bootstrap current [1]
 - Effectively neutral beam current drive
 - Weakened if poloidal fast ion Larmor radius is larger than the magnetic island (≈ orbit loss)
- Kinetic neoclassical polarization current is recently suggested [2]
 - Fast ion equivalent of neoclassical polarization current
 - Loss of ion E×B drift leads to toroidal current that restores charge neutrality
 - Takes effect after the formation of island separatrix Not a trigger mechanism!
 - Introduces ion density profile into magnetic island physics
 - [1] Hegna and Bhattacharjee, Phys. Rev. Lett. 63 2056 (1989)
 - [2] Cai, Nucl. Fusion **56** 126016 (2016)

$$\frac{1}{k_r} \frac{\tau_R}{r^2} \frac{dw}{dt} = \Delta'_{m,n}(w) + k_b \left[\frac{16J_{BS}}{s\langle J \rangle} \frac{w}{w^2 + w_d^2} \right] - k_p \left[\varepsilon^{3/2} \frac{\rho_{\theta i}^2}{w^2} - \frac{L_{n_i}}{L_{n_h}} \frac{n_h}{n_i} \right] \frac{\beta_{\theta}}{w} \left(\frac{L_q}{L_p} \right)^2 - k_c \frac{\beta_{\theta} \varepsilon^2}{rw} \frac{L_q^2}{|L_p|} \frac{q^2 - 1}{q^2}$$

Kick model is used to evaluate MHD induced fast ion transport

- NSTX #134020 is selected for analysis
 - Neutral beam heated H-mode at B_T = 0.44 T and I_P = 0.9 MA
 - Scenario for reliable n = 1 excitation [1]
 - Neutral beam power is stepped down intentionally [1]
- Neutron rate is measured using F/G scintillator [2]
 - Simulated neutron rate using Kick model agrees better [3]
 - Experimental measurement is used as-is
 - Agreement is better considering measurement uncertainty
- Validated kick TRANSP is used for time dependent profiles
- [1] La Haye et al., Phys. Plasmas 19 062506 (2012)
- [2] Roquemore et al., Proc. Symposium on Fusion Engineering SP1-39 (2011)
- [3] Yang et al., Plasma Phys. Control. Fusion 63 045003 (2021)

Synthetic soft X-ray diagnostic reveals n = 1 mode structure

- Tomography of $\tilde{\varepsilon}_{SXR}$ is difficult
 - Forward-model line-integrated $\tilde{\varepsilon}_{SXR}$
 - Adjust mode parameters
 - Minimize difference vs. measured $\tilde{\varepsilon}_{SXR}$
- Structure of n = 1 system [1]
 - Core kink mode (nonresonant)
 - Magnetic island at q = 2 (i.e., m = 2)
- Input to kick TRANSP analysis

[1] Yang et al., Plasma Phys. Control. Fusion **63** 045003 (2021)

Simulated island width is compared with experiment

- Coefficients are adjusted to minimize difference
 - Fit result is a global minimum in optimization problem
- Onset of magnetic island is out of scope
 - Simulation starts at 0.64 s
 - Initial island width is set at 2 cm (3% of minor radius)
 - We are concerned on the factor that makes island grow
- Island grows like w ~ t (as would a classical TM)
 - Something needs to cancel out bootstrap current drive

$$\frac{1}{k_3} \frac{\tau_R}{r^2} \frac{dw}{dt} = \Delta'_{m,n}(w) + k_1 \left[\frac{16J_{BS}}{s\langle J \rangle} \frac{w}{w^2 + w_d^2} \right] - k_2 \left[\varepsilon^{3/2} \frac{\rho_{\theta i}^2}{w^2} - \frac{L_{n_i}}{L_{n_h}} \frac{n_h}{n_i} \right] \frac{\beta_{\theta}}{w} \left(\frac{L_q}{L_p} \right)^2 - k_4 \frac{\beta_{\theta} \varepsilon^2}{rw} \frac{L_q^2}{|L_p|} \frac{q^2 - 1}{q^2}$$

Bootstrap drive is likely canceled out by curvature stabilization

- Dimensionless stability indices (∆') are compared
 - Curvature stabilization is large in spherical tori [1]
 - Balances bootstrap current drive
 - Helps simulate island growth like w ~ t
- Classical drive decreases with time
 - Need a push to maintain slope dw/dt
 - Can polarization current term provide a timely push?

$$\frac{1}{k_3} \frac{\tau_R}{r^2} \frac{dw}{dt} = \Delta'_{m,n}(w) + k_1 \left[\frac{16J_{BS}}{s\langle J \rangle} \frac{w}{w^2 + w_d^2} \right] - k_2 \left[\varepsilon^{3/2} \frac{\rho_{\theta i}^2}{w^2} - \frac{L_{n_i}}{L_{n_h}} \frac{n_h}{n_i} \right] \frac{\beta_{\theta}}{w} \left(\frac{L_q}{L_p} \right)^2 - k_4 \frac{\beta_{\theta} \varepsilon^2}{rw} \frac{L_q^2}{|L_p|} \frac{q^2 - 1}{q^2}$$

Competing fast ion part in polarization current term is essential

- Classical drive decreases with time
 - Fast ion part provides chance for $\Delta'_{pol} > 0$
 - Simulation cannot follow measurement w/o fast ion part
- Spike in fast ion part is likely a numerical error
 - Ion density profile is flat near q = 2 surface
 - Sometimes $L_{n_i} \equiv n_i / \nabla n_i$ goes infinity as $\nabla n_i \rightarrow 0$
 - Fast ion transport is typically inside q = 2 surface
 - As a result, L_{n_h} does not go infinity, resulting in Δ'_{u} spike

$$\frac{1}{k_3} \frac{\tau_R}{r^2} \frac{dw}{dt} = \Delta'_{m,n}(w) + k_1 \left[\frac{16J_{BS}}{s\langle J \rangle} \frac{w}{w^2 + w_d^2} \right] - k_2 \left[\varepsilon^{3/2} \frac{\rho_{\theta i}^2}{w^2} - \frac{L_{n_i}}{L_{n_h}} \frac{n_h}{n_i} \right] \frac{\beta_{\theta}}{w} \left(\frac{L_q}{L_p} \right)^2 - k_4 \frac{\beta_{\theta} \varepsilon^2}{rw} \frac{L_q^2}{|L_p|} \frac{q^2 - 1}{q^2}$$

Island saturates at orbit stochasticization threshold in NSTX

- Three NSTX discharges have different q profiles [1]
 - As mode amplitude is scanned beyond measured...
 - Fast ion transport starts to increase rapidly
 - At DIII-D, threshold was at A / $A_{meas} \ll 1$ [2]

- [1] Yang et al., Plasma Phys. Control. Fusion **63** 045003 (2021)
- [2] Bardoczi et al., Plasma Phys. Control. Fusion 61 055012 (2019)

Energy exchange profile shows fast ions taking energy from TM

- Stochastic transport is confirmed
 - Transport increases when...
 - KAM surfaces "start to" break [1]
- More fast ion transport for bigger island
 - Causes loss of passing fast ions
 - Less kinetic neoclassical polarization current
 - Island drive is reduced & growth saturates

[1] Collins et al., Phys. Rev. Lett. **116** 095001 (2016)

Passing fast ions may be essential for island growth in NSTX

- Passing fast ions is essential to opening the gate for island growth in NSTX #134020
 - Kinetic neoclassical polarization current provides valuable degree of freedom for NTM drive
 - Quantitative analysis of fast ion effect on NTM stability can be done using TRANSP
- Island growth saturation at orbit stochastiziation threshold is observed
 - Qualitative agreement with passing fast ion induced island drive theory
- Future work includes...
 - Further exploration into NSTX NTM database
 - Benchmark of classical ∆' calculation using STRIDE [1]
 - Comparison with DIII-D experiment result: Less fast ion contribution is expected in DIII-D

[1] Glasser and Koleman, Phys. Plasmas 25 082502 (2018)

Questions remain due to uncertainty in island rotation direction

- Doppler shift makes measurement of island rotation frequency difficult
 - Island rotation at plasma frame is small, whereas Doppler shift (noise) is large [1]
 - Islands may change directions by turbulence [2]
- Assuming island rotates in ion diamagnetic direction ($\omega' < 0$):
 - Polarization current is stabilizing, giving rise to explanation to observed island saturation [3]
 - Kinetic neoclassical polarization current is destabilizing [4]
 - However, this contradicts previous assessment [5]

- [1] La Haye et al., Phys. Plasmas **10** 3644 (2003)
- [2] Hornsby et al., Plasma Phys. Control. Fusion 58 014028 (2016)
- [3] Wilson et al., Phys. Plasmas 3 248 (1996)
- [4] Cai Nucl. Fusion **56** 126016 (2016)
- [5] La Haye et al., Phys. Plasmas 19 062506 (2012)

$$\Delta'_{pol} = -\epsilon^{3/2} \left(\frac{L_q}{L_p} \right) \frac{\rho_{\theta i}^2}{w^2} \frac{\beta_{\theta}}{w} \frac{\omega'(\omega' - \omega_{*i})}{\omega_{*e}^2}$$

$$\Delta'_{kin.nc-pol} = -\frac{\beta_{\theta}}{w} \left(\frac{L_q}{L_p}\right) \frac{L_{n_i}}{L_h} \frac{n_h}{n} \frac{\omega'}{\omega_{*i}}$$

TRANSP is used to calculate profiles used for this study

- NSTX #134020 is selected for analysis
 - Neutral beam heated H-mode at B_T = 0.44 T and I_P = 0.9 MA
 - Scenario for reliable n = 1 excitation [1]
- TRANSP is used for profiles
 - MSE [2] constrained equilibrium [3]: q = 2 at $\psi_N = 0.4$
 - Fast ion density [4]: MHD induced transport captured at ψ_N < 0.4

^[2] Levinton and Yuh, Rev. Sci. Instrum. 79 10F522 (2008)

- [3] Menard et al., Phys. Rev. Lett. 97 095002 (2006)
- [4] Podestà et al., Plasma Phys. Control. Fusion 56 055063 (2014)

Kinetic neoclassical polarization current term introduces $n_i(\psi_N)$

- Fast ions make ion density important for NTM
- CHERS provides ion density profile [1]
 - Measures carbon density profile
 - Additional input of Z_{eff} is needed for ion density profile
 - Ion density profile is needed for $Z_{\rm eff}$ profile
- TRANSP validates measured n_i near q = 2
 - Core disagreement is likely due to carbon accumulation
 - TRANSP considers CHERS + TS: Likely more accurate

[1] Podestà et al., Rev. Sci. Instrum. **79** 10E521 (2008)

$$\frac{1}{k_r} \frac{\tau_R}{r^2} \frac{dw}{dt} = \Delta'_{m,n}(w) + k_b \left[\frac{16J_{BS}}{s\langle J \rangle} \frac{w}{w^2 + w_d^2} \right] - k_p \left[\varepsilon^{3/2} \frac{\rho_{\theta i}^2}{w^2} - \frac{L_{n_i}}{L_{n_h}} \frac{n_h}{n_i} \right] \frac{\beta_{\theta}}{w} \left(\frac{L_q}{L_p} \right)^2 - k_c \frac{\beta_{\theta} \varepsilon^2}{rw} \frac{L_q^2}{|L_p|} \frac{q^2 - 1}{q^2}$$

Special considerations are made for the simulation

- Geometric and magnetic ε are different in spherical tori
 - Rigorously, toroidal effects come from magnetic $\varepsilon_{\rm B}$ [1]

$$\varepsilon_B \equiv \frac{B_{in} - B_{out}}{B_{in} + B_{out}}$$

- Bootstrap current is calculated from NCLASS model [2]
 - Evolution of $n_{\rm e}$ and/or $T_{\rm e}$ is not the same as that of $\beta_{\rm e}$ [3]
- Island location is used as extra constraint for q

- [1] La Haye et al., Phys. Plasmas **19** 062506 (2012)
- [2] Houlberg et al., Phys. Plasmas 4 3230 (1997)
- [3] Fredrickson et al., Phys. Plasmas **7** 4112 (2000)

Fit result is a global minimum in optimization problem

- Optimization problem can converge to...
 - One of the local minima
 - Global minimum
- If the solution is a global minimum...
 - Fit result would be insensitive to initial guess
 - Box scatter in result vs. input graph
 - All coefficients show box scatter
- Coefficient k5 has large uncertainty
 - Reasonable
 - Involves cross field diffusion term

Some physics are missing in the model

- Parallel current effect when island grows larger
 - Poloidal Larmor radius for beam ions in NSTX ≤ 15 cm
- Different sources of bootstrap current [1]
- Effect of island rotation
- In NSTX #123870, classical ∆' drops negative
 - Need more freedom in driving terms
 - At low magnetic shear, trapped fast ions may affect classical ∆' [2]

- [1] Gorelenkov et al., Phys. Plasmas **3** 3379 (1996)
- [2] Halfmoon and Brennan, Phys. Plasmas 24 062501 (2017)

NTM-GRE analysis procedure has been developed

- 1. Run EFIT
- 2. Run NTM-SXR
 - Determine [tnorm] and [tscale]
- 3. Run TRANSP (classical)
- 4. Run ORBIT
- 5. Run TRANSP (kick)
 - Determine go/rerun based on [Sn]
- 6. Run NTM-GRE
- Measured: δB , SXR, and other profiles
- Total 6 steps and 2 decision points

Fast ions interact with NTM as they do with AE

- Fast ions interact with Alfvén eigenmodes (AEs) [1]
- Fast ions interact with neoclassical tearing modes (NTMs)
 - NTMs cause fast ion transport
 - Model validated qualitatively [2] and quantitatively [3]
 - NTM chirp is correlated with fast ion activity [4]
 - Model validation inconclusive [3]
- Use TRANSP to study fast ion effect on NTM stability

On/Co/Tang (#170247)

DIII-D

[4] Fredrickson, Phys. Plasmas **9** 548 (2002)

^[1] Podestà et al., Plasma Phys. Control. Fusion **59** 095008 (2017)

^[2] Zweben et al., Nucl. Fusion 39 1097 (1999)

^[3] Heidbrink et al., Nucl. Fusion 58 082027 (2018)

Island width is calculated from Mirnov coil, EFIT, and SXR data

- TRANSP provides time-dependent solution
 - Time-dependent input is provided for NTM parameters
- Island width time evolution w(t) is [1]:

$$w^2 = g(rb_rq/mB_\theta q')$$

where it relates Mirnov signal by $b_r \approx (1/2)(r_w/r)^{m+1}b_\theta$ [2]

- From linear, cylindrical, ideal, low- β tearing mode equation
- Constant g accounts for simplifications
 - Determined by scaling to synthetic SXR diagnostics [3]

- [1] Chang et al., NF **34** 1309 (1994)
- [2] La Haye et al., PoP **7** 3349 (2000)
- [3] Yang et al., Plasma Phys. Control. Fusion 63 045003 (2021)

Magnetic island width and its error bar are determined from SXR

Island width is related to Mirnov coil signal

$$w = Cw_{Mirnov}$$

- Assuming SXR points are true, $C = \langle w_{SXR}/w_{Mirov} \rangle$
- Standard deviation determines error $\delta C = \sigma(w_{SXR}/w_{Mirov})$
- Error bar is therefore $\delta w = 2\sigma w_{Mirnor}$
- Take maximum error bar as a representative value

What is triggering the NTM?

- NSTX is transient β_N is still rising
 - ELM free
 - Sawteeth free $(q_{min} > 1)$
 - The "spontaneous" NTM seen in TFTR [1]

[1] Fredrickson, Phys. Plasmas **9** 548 (2002)

Beta N growth might have "triggered" the NTM (triggerless NTM)

Does island grow like classical tearing mode in NSTX?

Consider modified Rutherford equation

$$\frac{\tau_R}{r^2}\frac{dw}{dt} = \Delta'_{m,n}(w) + \frac{16J_{BS}}{s\langle I \rangle}\frac{1}{w}$$

When classical term dominates

$$w \sim Ct$$
$$\delta B \sim Ct^2$$

When bootstrap current term dominates

$$w \, dw/dt \sim N$$

$$w^2 \sim Nt$$

$$\delta B \sim Nt$$

• Consider $w \sim \sqrt{\delta B}$ for the last lines

On calculation of classical delta prime

- Tearing mode equation is solved for helical flux functions
 - Considered island width dependence [1]
 - Considered reversed shear plasmas [2]
 - Considered interaction with walls [3]

- [1] White et al., Phys. Fluids **20** 800 (1977)
- [2] Fredrickson et al., Phys. Plasmas 7 4112 (2000)
- [3] Nave and Wesson, Nucl. Fusion **30** 2575 (1990)

Previous assessment of island frequency in plasma frame [1]

TABLE I. Evaluation of sources of small island effects at the marginal point for m/n = 2/1.

	NSTX #134020	DIII-D #133577	DIII-D #135861
$\varepsilon^{1/2}$	0.567	0.478	0.402
$w_{marg}(cm)$	3.42	2.76	1.71
$w_{bi} = arepsilon^{1/2} ho_{ heta i}$	1.40	0.89	0.99
$w_d(cm)$	1.07	1.03	0.82
$(v_i/arepsilon)/ \omega_e^* $	0.84	2.73	1.09
ω/ω_i^*	0.23 ± 0.37	-0.20 ± 0.38	-0.07 ± 0.30
$(3L_q/L_{pe})^{1/2}w_{bi}$	3.01	1.52 (4.60) ^a	2.16

^aHigh collisionality is enhanced by $\varepsilon^{-3/4}$.

[1] La Haye et al., Phys. Plasmas 19 062506 (2012)

On curvature term in spherical tori

- Consider that relative strength D_R/D_{NC} is like $f(\varepsilon)$
 - Smaller for DIII-D but significant for NSTX
 - Assuming $q \approx \varepsilon (B_T/B_\theta) (1 + \kappa^2)/2$
 - Curvature term must be included for ST [1]

$$k_3 \frac{\tau_R}{r} \frac{dw}{dt} = \left[\Delta' + \frac{rD_R}{w} + \frac{rD_{NC}}{w} \right] r$$

Standard approximation works: See figure

$$D_R \approx -(q^2 - 1) \left(L_q^2 / r L_p \right) \beta$$

[1] La Haye et al., Phys. Plasmas 19 062506 (2012)

Reproduced from Figure 8 [1]

NSTX #134020

- H-mode with reliable rotating *n* = 1 onset
 - $-I_{P} = 0.9 \text{ MA}, B_{T} = 0.44 \text{ T}$
 - P_{NB} steps down from 3 to 2 MW at 0.7 s
 - Lithiumization and n = 1 and n = 3 error field correction
- SXR/Mirnov conversion factor is $C_{SXR} = 1.17 \pm 0.16$
- Rotating n = 1 saturates at 6.3 cm
 - Onset at around 0.63 s when $\delta B = 1$ G
 - Peak at 0.704 s when $\delta B = 10$ G
 - Rotation is steady at 7.6 kHz (q = 2 from LRDFIT06)

NSTX #123873

- Lower rotation
 - $-I_{P} = 1.0 \text{ MA}, B_{T} = 0.44 \text{ T}$
 - P_{NB} steps down from 4 to 2 MW at 0.6 s
- SXR/Mirnov conversion factor is $C_{SXR} = 1.91 \pm 0.47$
- Rotating n = 1 saturates at 6.2 cm
 - Onset at around 0.58 s when $\delta B = 1$ G
 - Peak at 0.621 s when $\delta B = 14.2$ G
 - Rotation is steady at 5.9 kHz (q = 2 from LRDFIT06)

NSTX #138940

- High-triangularity, low-elongation
 - $-I_{P} = 0.8 \text{ MA}, B_{T} = 0.44 \text{ T}$
 - $-P_{NB}$ = 4 MW is modulated by β_{N} controller
- SXR/Mirnov conversion factor is $C_{SXR} = 1.25 \pm 0.36$
- Rotating n = 1 saturates at 13.6 cm
 - Onset at around 0.87 s when δB = 1 G
 - Peak at 1.048 s when $\delta B = 8.1$ G
 - Rotation is steady at 9.6 kHz (q = 2 from LRDFIT06)

Mode amplitude may have been underestimated by 20%

Measured island width is 6.3 cm, 20% is 1.2 cm (smaller than SXR resolution)

